Issue 4, 2023

Synthesis and characterization of potential polycyclic energetic materials using bicyclic triazole and azetidine structures as building blocks

Abstract

Exploring the design strategy of new energetic materials is crucial to promote the development of energetic materials. In this study, a method for designing polycyclic energetic materials is proposed by combining the azetidine structure with azobis-1,2,4-triazole or bi-1,2,4-triazole. A series of typical triazolyl polycyclic compounds were designed and synthesized by simple nucleophilic reaction, which included 5,5′-dichloro-3,3′-bis(3,3′-difluoroazetidine)-4,4′-azobis-1,2,4-triazole (1), 5,5′-dichloro-3,3′-bis(3,3′-difluoroazetidine)-4,4′-bi-1,2,4-triazole (2), 5,5′-dichloro-3-(N,N-dimethyl)-3′-(3,3′-difluoroazetidine)-4,4′-bi-1,2,4-triazole (3) 5,5′-dichloro-3,3′-bis(3,3′-dinitroazetidine)-4,4′-bi-1,2,4-triazole (4), 5,5′-dichloro-3-(N,N-dimethyl)-3′-(3,3′-dinitroazetidine)-4,4′-bi-1,2,4-triazole (5), and 5,5′-diazido-3,3′-bis(3,3′-difluoroazetidine)-4,4′-azo-1,2,4-triazole (6). These designed and synthesized polycyclic compounds (1, 2, 3) have high decomposition temperatures (>200 °C). The molecular van der Waals surface electrostatic potentials suggested the reactivity of compounds 1, 2, and 3 when attacked by nucleophiles. The natural bond orbital and Hirshfeld surface analysis proved the essential reason for the stability of these compounds in theory. The formula design example suggests that some triazolyl polycyclic compounds (4, 5, and 6) are potentially explosives, suggesting that this strategy is feasible for constructing the triazolyl polycyclic energetic compounds.

Graphical abstract: Synthesis and characterization of potential polycyclic energetic materials using bicyclic triazole and azetidine structures as building blocks

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2022
Accepted
20 Dec 2022
First published
17 Jan 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 2600-2610

Synthesis and characterization of potential polycyclic energetic materials using bicyclic triazole and azetidine structures as building blocks

X. Yang, C. Jia, X. Miao, Y. Li and S. Pang, RSC Adv., 2023, 13, 2600 DOI: 10.1039/D2RA06646G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements