Issue 23, 2023

Asymmetry-enhanced 59Co NMR thermometry in Co(iii) complexes

Abstract

Design strategies for molecular thermometers by magnetic resonance are essential for enabling new noninvasive means of temperature mapping for disease diagnoses and treatments. Herein we demonstrate a new design strategy for thermometry based on chemical control of the vibrational partition function. To do so, we performed variable-temperature 59Co NMR investigations of four air-stable Co(III) complexes: Co(accp)3 (1), Co(bzac)3 (2), Co(tBu2-acac)3 (3), and Co(acac)3 (4) (accp = 2-acetylcyclopentanonate; bzac = benzoylacetonate; tBu2-acac = 2,2,6,6-tetramethyl-3,5-heptanedionate and acac = acetylacetonate). We discovered 59Co chemical shift temperature sensitivity (ΔδT) values of 3.50(2), 3.39(3), 1.63(3), and 2.83(1) ppm °C−1 for 1–4, respectively, at 100 mM concentration. The values observed for 1 and 2 are new records for sensitivity for low-spin Co(III) complexes. We propose that the observed heightened sensitivities for 1 and 2 are intimately tied to the asymmetry of the accp and bzac ligands versus the acac and tBu2-acac ligands, which enables a larger number of low-energy Raman-active vibrational modes to contribute to the observed ΔδT values.

Graphical abstract: Asymmetry-enhanced 59Co NMR thermometry in Co(iii) complexes

Supplementary files

Article information

Article type
Research Article
Submitted
17 Aug 2023
Accepted
20 Oct 2023
First published
23 Oct 2023
This article is Open Access
Creative Commons BY-NC license

Inorg. Chem. Front., 2023,10, 7064-7072

Asymmetry-enhanced 59Co NMR thermometry in Co(III) complexes

Ö. Üngör, S. Sanchez, T. M. Ozvat and J. M. Zadrozny, Inorg. Chem. Front., 2023, 10, 7064 DOI: 10.1039/D3QI01641B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements