Issue 34, 2023

Enantioselective synthesis of 3-hydroxy- and 3-amino-3-alkynyl-2-oxindoles by the dimethylzinc-mediated addition of terminal alkynes to isatins and isatin-derived ketimines

Abstract

A common protocol for enantioselective alkynylation of isatins and isatin-derived ketimines using terminal alkynes and Me2Zn in the presence of a catalytic amount of a chiral perhydro-1,3-benzoxazine with moderate to excellent enantioselectivity under mild reaction conditions is described. The additions to ketimines present a novel approach to chiral amines being derivatives of oxindoles. The reaction is broad in scope with respect to aryl- and alkyl-substituted terminal alkynes and isatin derivatives. In isatins, the alkynylation occurs at the Si face of the carbonyl group, whereas in the ketimine derivatives it occurs at the Re face of the imine.

Graphical abstract: Enantioselective synthesis of 3-hydroxy- and 3-amino-3-alkynyl-2-oxindoles by the dimethylzinc-mediated addition of terminal alkynes to isatins and isatin-derived ketimines

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2023
Accepted
01 Aug 2023
First published
03 Aug 2023
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2023,21, 6940-6948

Enantioselective synthesis of 3-hydroxy- and 3-amino-3-alkynyl-2-oxindoles by the dimethylzinc-mediated addition of terminal alkynes to isatins and isatin-derived ketimines

E. Prieto, J. D. Martín, J. Nieto and C. Andrés, Org. Biomol. Chem., 2023, 21, 6940 DOI: 10.1039/D3OB01023F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements