Bilateral metalloheterocyclic systems based on palladacycle and piperidine-2,4-dione pharmacophores†‡
Abstract
The design of molecules with effective anticancer properties constructed from both dually active metal complex and organic fragments is a novel trend in medicinal chemistry. This concept suggests the impact of a drug on several biological targets or the synergistic action of both fragments as a single unit. We propose that the combination of a Pd-metallocomplex fragment and an organic unit can be an interesting model for anticancer drug discovery. The first phase in the development of such suggested molecules is the synthesis of bilateral metallosystems containing bioactive 6-substituted piperidin-2-one and a palladated N-phenylpyrazolic fragment. Both fragments were incorporated into one molecule through the fused pyrazole-piperidine-2-one unit followed by pyrazol-directed cyclopalladation of the phenyl-group with Pd(OAc)2. An effect of acceleration of the rate of the palladation by NH-lactam was observed. The synthesized hybrid palladacycles have been characterized and tested for their cytotoxic activity on three cancerous cell lines as PPh3 complexes, revealing structures with potential for further development and structural optimization.