Probing the surface-active sites of metal nanoclusters with atomic precision: a case study of Au5Ag11†
Abstract
The determination of surface-active sites in metal nanoclusters is of great significance for the in-depth understanding of structural evolutions and physicochemical property mechanisms. In this work, the surface-active sites of the Au5Ag11(DMBT)8(DPPOE)2 cluster template towards metal-/ligand-exchange reactions were unambiguously identified at the atomic level. The active-site tailoring of this nanocluster gave rise to three derivative nanoclusters, Au5Ag9Cu2(DMBT)8(DPPOE)2, Au5Ag11(DMBT)6(DCBT)2(DPPOE)2, and Au5Ag11(DCBT)8(DPPOE)2. The single-crystal structural analysis revealed that all these M16 (M = Au/Ag/Cu) clusters exhibited almost the same framework. Besides, the surface-active site tailoring contributed to significant changes in optical absorptions and emissions of these metal nanoclusters. The findings in this work not only provide an in-depth understanding of the active-site tailoring of cluster surface structures but also develop an intriguing template that enables us to grasp the structure–property correlations at the atomic level.

Please wait while we load your content...