Issue 26, 2023

Room temperature exciton formation and robust optical properties of CVD-grown ultrathin Bi2O2Se crystals on arbitrary substrates

Abstract

The appealing success of non-van der Waals (non-VdW) two-dimensional (2D) bismuth oxyselenide (Bi2O2Se) crystals in optoelectronics provides an exciting avenue to investigate their fundamental physical properties. To date, the majority of efforts have focused on understanding the properties of 2D Bi2O2Se, usually grown on a mica substrate. However, a gap exists in realizing the origin of photoluminescence (PL) of new age non-VdW Bi2O2Se at visible and near-infrared (NIR) wavelengths and the effect of growth substrates on the structure and optical properties. Herein, we report that the formation of multiple excitons in momentum valleys is responsible for broadband absorption and visible PL from a few layer thick 2D Bi2O2Se. The effect of growth substrates on the structure and optical properties is investigated in detail. Our studies unfold that the growth substrates (mica, sapphire, quartz, SiO2, glass) introduce strain/doping in chemical vapor deposition (CVD)-grown Bi2O2Se crystals, and consequently, the morphology, lattice constant, absorption coefficient, optical bandgap, refractive index, and PL properties are modulated. In addition, the possible direct/indirect multiple exciton formation at the valence band to the conduction band at different symmetry points of Bi2O2Se is analyzed from experimental data on different growth substrates and corroborated with the density functional theory (DFT) calculation of the electronic band structure. Furthermore, temperature-dependent photo-carrier dynamics discloses an A/Γ-exciton activation energy of 209.6 meV in Bi2O2Se. These findings are significant for the futuristic optoelectronic applications of Bi2O2Se and the choice of growth substrates on directly fabricated nanodevices.

Graphical abstract: Room temperature exciton formation and robust optical properties of CVD-grown ultrathin Bi2O2Se crystals on arbitrary substrates

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2023
Accepted
29 May 2023
First published
29 May 2023

Nanoscale, 2023,15, 11222-11236

Room temperature exciton formation and robust optical properties of CVD-grown ultrathin Bi2O2Se crystals on arbitrary substrates

M. T. Hossain, T. Jena, U. Nath, M. Sarma and P. K. Giri, Nanoscale, 2023, 15, 11222 DOI: 10.1039/D3NR01201H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements