Direct observation of magnetic ordering induced via systematic lattice disorder in artificial rhombus spin ices†
Abstract
It is critical to understand the effect of lattice geometry on the order parameter of a condensed matter system, as it controls phase transitions in such systems. Artificial spin ices (ASIs) are two-dimensional lattices of Ising-like nanomagnets that provide an opportunity to explore such phenomena by lithographically controlling the lattice geometry to observe its influence on magnetic ordering and frustration effects. Here we report a systematic approach to studying the effects of disorder in rhombus ASIs generated from combinations of five vertex motifs. We investigate four geometries characterized by a geometric order parameter, with symmetries ranging from periodic to quasiperiodic to random. Lorentz transmission electron microscopy data indicates magnetic domain behavior depends on chains of strongly-coupled islands in the periodic and sixfold-twinned lattices, while the behavior of the disordered lattice is dominated by vertex motifs with large configurational degeneracy. Utilizing micromagnetic simulations, a quantitative analysis of the lattice energetics showed that the experimental rotationally-demagnetized state of the disordered ASI was closer in energy to the idealized ground state compared to other periodic and twinned ASIs. Our work provides a unique pathway for using degeneracy, magnetic frustration, and order to control the magnetization behavior of designer disordered systems.