Issue 15, 2023

Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors

Abstract

The production of 2D/2D heterostructures (HTs) with favorable electrochemical features is challenging, particularly for semiconductor transition metal dichalcogenides (TMDs). In this studies, we introduce a CO2 laser plotter-based technology for the realization of HT films comprising reduced graphene oxide (rGO) and 2D-TMDs (MoS2, WS2, MoSe2, and WSe2) produced via water phase exfoliation. The strategy relies on the Laser-Induced production of HeterosTructures (LIHTs), where after irradiation the nanomaterials exhibit changes in the morphological and chemical structure, becoming conductive easily transferable nanostructured films. The LIHTs were characterized in detail by SEM, XPS, Raman and electrochemical analysis. The laser treatment induces the conversion of GO into conductive highly exfoliated rGO decorated with homogeneously distributed small TMD/TM-oxide nanoflakes. The freestanding LIHT films obtained were employed to build self-contained sensors onto nitrocellulose, where the HT works both as a transducer and sensing surface. The proposed nitrocellulose-sensor manufacturing process is semi-automated and reproducible, multiple HT films may be produced in the same laser treatment and the stencil-printing allows customizable design. Excellent performance in the electroanalytical detection of different molecules such as dopamine (a neurotransmitter), catechin (a flavonol), and hydrogen peroxide was demonstrated, obtaining nanomolar limits of detection and satisfactory recovery rates in biological and agrifood samples, together with high fouling resistance. Considering the robust and rapid laser-induced production of HTs and the versatility of scribing desired patterns, the proposed approach appears as a disruptive technology for the development of electrochemical devices through sustainable and accessible strategies.

Graphical abstract: Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2022
Accepted
13 Mar 2023
First published
13 Mar 2023

Nanoscale, 2023,15, 7164-7175

Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors

F. Della Pelle, Q. U. A. Bukhari, R. Alvarez Diduk, A. Scroccarello, D. Compagnone and A. Merkoçi, Nanoscale, 2023, 15, 7164 DOI: 10.1039/D2NR07157F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements