Issue 6, 2023

Negatively charged Cu1.33S nanochains: endocytic pathway, photothermal therapy and toxic effect in vivo

Abstract

Negatively charged nanomaterials have good biocompatibility and low cytotoxicity, but the efficiency of their entry into cells is relatively low. Thus, striking a balance between cell transport efficiency and cytotoxicity is a challenging problem in the field of nanomedicine. In this work, negatively charged Cu1.33S nanochains have shown a higher cellular uptake level in 4T1 cells than Cu1.33S nanoparticles with a similar diameter and surface charge. Inhibition experiments indicate that the cellular uptake of the nanochains depends principally on the lipid-raft protein (i.e. caveolin-1) mediated pathway, although the role of clathrin cannot be ruled out. Caveolin-1 can provide short-range attraction at the membrane interface. Furthermore, by using biochemical analysis, blood routine examination and histological evaluation on healthy Sprague Dawley rats, it is found that the Cu1.33S nanochains have no obvious toxic effect. The Cu1.33S nanochains have an effective photothermal therapy effect of tumor ablation in vivo under low injection dosage and laser intensity. As for the best performing group (20 μg + 1 W cm−2), the temperature of the tumor site rapidly increases within the initial 3 min and rises to a plateau of 79 °C (ΔT = 46 °C) at 5 min. These results reveal the feasibility of the Cu1.33S nanochains as a photothermal agent.

Graphical abstract: Negatively charged Cu1.33S nanochains: endocytic pathway, photothermal therapy and toxic effect in vivo

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2022
Accepted
26 Jan 2023
First published
27 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 1706-1713

Negatively charged Cu1.33S nanochains: endocytic pathway, photothermal therapy and toxic effect in vivo

L. Luo and Z. Wang, Nanoscale Adv., 2023, 5, 1706 DOI: 10.1039/D2NA00776B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements