Issue 12, 2023

Origin of the switchable photocurrent direction in BiFeO3 thin films

Abstract

We report external bias driven switchable photocurrent (anodic and cathodic) in 2.3 eV indirect band gap perovskite (BiFeO3) photoactive thin films. Depending on the applied bias our BiFeO3 films exhibit photocurrents more usually found in p- or n-type semiconductor photoelectrodes. In order to understand the anomalous behaviour ambient photoemission spectroscopy and Kelvin-probe techniques have been used to determine the band structure of the BiFeO3. We found that the Fermi level (Ef) is at −4.96 eV (vs. vacuum) with a mid-gap at −4.93 eV (vs. vacuum). Our photochemically determined flat band potential (Efb) was found to be 0.3 V vs. NHE (−4.8 V vs. vacuum). These band positions indicate that Ef is close to mid-gap, and Efb is close to the equilibrium with the electrolyte enabling either cathodic or anodic band bending. We show an ability to control switching from n- to p-type behaviour through the application of external bias to the BiFeO3 thin film. This ability to control majority carrier dynamics at low applied bias opens a number of applications in novel optoelectronic switches, logic and energy conversion devices.

Graphical abstract: Origin of the switchable photocurrent direction in BiFeO3 thin films

Supplementary files

Article information

Article type
Communication
Submitted
20 Sep 2023
Accepted
11 Oct 2023
First published
12 Oct 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2023,10, 5892-5897

Origin of the switchable photocurrent direction in BiFeO3 thin films

Y. Wang, M. Daboczi, M. Zhang, J. Briscoe, J. Kim, H. Yan and S. Dunn, Mater. Horiz., 2023, 10, 5892 DOI: 10.1039/D3MH01510F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements