Issue 9, 2023

A dual stimuli-responsive smart soft carrier using multi-material 4D printing

Abstract

This paper proposes a 4D printed smart soft carrier with a hemispherical hollow and openable lid. The soft carrier is composed of a lid with a slot (with a shape of 4 legs), a border, and a hemisphere. The soft carrier is fabricated by 4D printing using smart hydrogels. Specifically, the lid, border, and hemisphere are fabricated using a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel, a non-responsive polyethylene glycol (PEG) hydrogel with superparamagnetic iron oxide nanoparticles (SPIONs), and a PEG hydrogel, respectively. Since the SPIONs are included in the border, the slot in the center of the lid is opened and closed according to the temperature change caused by near-infrared (NIR) irradiation, and the proposed soft carrier is magnetically driven by an external magnetic field. The hemisphere enables the storage and transport of cargo. The proposed soft carrier can control the opening and closing of the slot and movement to a desired position in water. Several cargo delivery experiments were conducted using various shapes and numbers of cargo. In addition, the proposed soft carrier can successfully handle small living marine organisms. This soft carrier can be manufactured by 4D printing and operated by dual stimuli (NIR and magnetic field) and can safely deliver various types of cargo and delicate organisms without leakage or damage. The flexibility of 4D printing enables the size of the soft carrier to be tailored to the specific physical attributes of various objects, making it an adaptable and versatile delivery approach.

Graphical abstract: A dual stimuli-responsive smart soft carrier using multi-material 4D printing

Supplementary files

Article information

Article type
Communication
Submitted
06 Apr 2023
Accepted
16 Jun 2023
First published
21 Jun 2023

Mater. Horiz., 2023,10, 3668-3679

A dual stimuli-responsive smart soft carrier using multi-material 4D printing

I. Choi, S. Jang, S. Jung, S. Woo, J. Kim, C. Bak, Y. Lee and S. Park, Mater. Horiz., 2023, 10, 3668 DOI: 10.1039/D3MH00521F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements