Millifluidic valves and pumps made of tape and plastic†
Abstract
There is growing interest in producing micro- and milli-fluidic technologies made of thermoplastic with integrated fluidic control elements that are easy to assemble and suitable for mass production. Here, we developed millifluidic valves and pumps made of acrylic layers bonded with double-sided tape that are simple and fast to assemble. We demonstrate that a layer of pressure-sensitive adhesive (PSA) is flexible enough to be deformed at relatively low pressures. A chemical treatment deposited on specific regions of the PSA prevents it from sticking to the thermoplastic, which enabled us to create three different types of valves in normally open or closed configurations. We characterized different aspects of their performance, their operating pressures, the cut-off pressure values to open or close the valves (for different configurations and sizes), and the flow rate and volume pumped by seven different micropumps. As an application, we implemented a glucose assay with integrated pumps and valves, automatically generating glucose dilutions and reagent mixing. The ability to create polymeric microfluidic control units made with tape paves the way for their mass manufacturing.