A general neural network model co-driven by mechanism and data for the reliable design of gas–liquid T-junction microdevices†
Abstract
In recent years, many models have been developed to describe the gas–liquid microdispersion process, which mainly rely on mechanistic analysis and may not be universally applicable. In order to provide a more comprehensive model and, most significantly, to provide a model for design, we have established a general database of microbubble generation in T-junction microdevices, including 854 data points from 12 pieces of literature. A neural network model that combines mechanistic and data modeling is developed. By transfer learning, more accurate results can be obtained. Additionally, we have proposed a design method that enables a relative deviation of less than 5% from the expected bubble size. A new device was designed and prepared to confirm the reliability of the method, which can prepare smaller bubbles than other common T-junction devices. In this way, a general and universal database and model are established and a design method for a gas–liquid T-junction microreactor is developed.