Issue 18, 2023

Non-catalytic proteins as promising detoxifiers in lignocellulosic biomass pretreatment: unveiling the mechanism for enhanced enzymatic hydrolysis

Abstract

Dilute acid (DA) pretreatment of biomass generates multiple inhibitory compounds within the pretreated hydrolysates. These compounds subsequently contribute to the formation of pseudo-lignin on the surface of the substrate, consequently impeding the efficiency of enzymatic digestibility. To detoxify the DA pretreated hydrolysates, post-incubation with non-catalytic proteins (amaranth protein, AP; soy protein, SP; bovine serum albumin, BSA) was performed in the present study. The enzymatic digestibility of DA-pretreated substrates was increased from 40.0% (without non-catalytic proteins) to 64.9, 53.8, and 56.4%, respectively, in the presence of AP (50 mg g−1), SP (65 mg g−1), and BSA (50 mg g−1). The post-incubation of pretreated substrates with non-catalytic proteins led to high hydrophobicity, contact angle, and accessibility, likely due to less formation of pseudo-lignin. Furthermore, gas chromatography/mass spectrometry analysis revealed that AP, SP, and BSA could lower the inhibitor concentrations in the pretreated hydrolysates by 39–100%, 5–100%, and 3–100%, respectively. The detoxification of the pretreated hydrolysates by AP demonstrated superior effectiveness compared to SP and BSA. To assess the affinity between inhibitors and non-catalytic proteins, surface plasmon resonance analysis was conducted, revealing the following affinity rates: AP (18.65 nM) > SP (17.04 nM) > BSA (16.87 nM). Additionally, molecular docking analysis revealed numerous molecular binding sites (i.e., hydrogen, polar, acidic, basic, and greasy contacts) with strong binding affinity ranging from −36.17 to −76.98 kcal mol−1 between the inhibitors and the amino acids of AP. Thus, this study highlights the potential application of AP as a cost-effective strategy for achieving a viable biorefinery. Also, the findings provide valuable insights that can be utilized to advance the development of (hemi)cellulases that exhibit enhanced resistance to lignin and inhibitors.

Graphical abstract: Non-catalytic proteins as promising detoxifiers in lignocellulosic biomass pretreatment: unveiling the mechanism for enhanced enzymatic hydrolysis

Associated articles

Article information

Article type
Paper
Submitted
20 May 2023
Accepted
12 Jul 2023
First published
13 Jul 2023

Green Chem., 2023,25, 7141-7156

Non-catalytic proteins as promising detoxifiers in lignocellulosic biomass pretreatment: unveiling the mechanism for enhanced enzymatic hydrolysis

M. Madadi, G. Song, V. K. Gupta, M. Aghbashloh, C. Sun, F. Sun and M. Tabatabaei, Green Chem., 2023, 25, 7141 DOI: 10.1039/D3GC01718D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements