Issue 5, 2023

Sustainability of drying technologies: system analysis

Abstract

Sustainability is a multi-dimensional indicator of the impact of current human activities on future generations. The concept of sustainability could be extended to food drying, reflecting the impact of current drying technologies on energy and resource use, as well as social and food security. The objective of this review is a sustainability assessment of drying, based on the so-called 4E system analysis considering energy, exergy, environmental and economic aspects. For energy analysis, instead of the ambiguous term “efficiency”, it is proposed to use specific energy consumption as a measure of the energy efficiency of drying. For exergy analysis, it is proposed to use specific exergy consumption as a measure of the efficiency of non-renewable resource usage. Both metrics, expressed in kilojoules per kg of extracted water, are good indicators of the sustainability of the drying process and their minimization is the objective of future research in drying technologies. The environmental impact of drying is evaluated as a potential carbon footprint and associated carbon tax rate. Economic analysis characterizes the sustainability of drying technology with the payback period and net present value, which are specific to the dried material. The insight into the effect of drying on the social aspects of sustainability, i.e. malnutrition and food insecurity is also presented. All aspects of sustainability are linked to each, showing how drying processes/technologies can contribute to a more sustainable world.

Graphical abstract: Sustainability of drying technologies: system analysis

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
27 May 2023
Accepted
17 Jun 2023
First published
20 Jun 2023
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2023,1, 629-640

Sustainability of drying technologies: system analysis

A. A. Martynenko and G. N. Alves Vieira, Sustainable Food Technol., 2023, 1, 629 DOI: 10.1039/D3FB00080J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements