Issue 4, 2023

Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes

Abstract

Regulating the electrical double layer (EDL) structure via electrolyte additives is a promising strategy to improve the cycling stability of Zn anodes, but there are no general strategies that can be used to rationally design EDL regulators for upgrading the Zn protection performance. Herein, by screening 15 solvent additives as EDL regulators, we reveal that the solid electrolyte interphase (SEI) capability of EDL regulators, instead of other parameters like the donor number, adsorption energy, and dielectric constant, predominately controls the cycling stability of Zn anodes. Specifically, the SEI capability of EDL regulators endows the Zn surface with a uniform and dense SEI layer, which physically isolates Zn anodes from electrolytes and induces dendrite-free Zn deposition. As a model electrolyte, 2M ZnSO4 solution with 0.5 vol% sulfolane enables Zn anodes to deliver high Zn plating/stripping reversibility under harsh test conditions. The compatibility of this designed electrolyte with V2O5 and MnO2 cathodes is also demonstrated at low N/P ratios of 5.5 and 3.2, respectively.

Graphical abstract: Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2023
Accepted
27 Feb 2023
First published
28 Feb 2023

Energy Environ. Sci., 2023,16, 1721-1731

Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes

C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian, G. Chang, Y. Zhang, Q. Tang, A. Hu and X. Chen, Energy Environ. Sci., 2023, 16, 1721 DOI: 10.1039/D3EE00045A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements