Issue 5, 2023

Translucent perovskite photovoltaics for building integration


Transparent photovoltaics provide diverse levels of average visible transmittance (AVT) along with concurrent light harvesting, making glass façades and windows accessible for photovoltaics. However, improvements in power conversion efficiency (PCE) and aesthetics are required to enhance commercial viability and public acceptance. This work presents the scalable fabrication of efficient micro-patterned translucent perovskite photovoltaics at optical qualities suited for building integration. Optimized laser-scribed transparent areas (25 μm) mitigate detrimental effects on electrical performance, featuring perovskite solar cells with 44% AVT and demonstrating industrial glass quality through neutral color rendering (CRI 97) and only 3% haze. Highlighting scalability, submodules yield PCEs of 9.0% at 32% AVT (4 cm2 aperture area). The transfer to two-terminal perovskite–perovskite tandem solar cells exhibiting PCEs of 17.7% at 12% AVT and 11.1% at 31% AVT demonstrates the first translucent perovskite tandem photovoltaics. Lastly, the novel concept of transmittance gradients with 7% cm−1 absolute change in AVT and 12.0% PCE for submodules is presented, providing a foundation for architectural individualizations.

Graphical abstract: Translucent perovskite photovoltaics for building integration

Supplementary files

Article information

Article type
23 Dec 2022
04 Apr 2023
First published
06 Apr 2023
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2023,16, 2212-2225

Translucent perovskite photovoltaics for building integration

D. B. Ritzer, B. Abdollahi Nejand, M. A. Ruiz-Preciado, S. Gharibzadeh, H. Hu, A. Diercks, T. Feeney, B. S. Richards, T. Abzieher and U. W. Paetzold, Energy Environ. Sci., 2023, 16, 2212 DOI: 10.1039/D2EE04137E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity