Reversible single-crystal to single-crystal transformation between triangular single-molecule toroics†
Abstract
We report a method for synthesizing single-molecule magnets through a single-crystal to single-crystal transformation. This process yields two single-molecule magnets with similar triangular Dy3 cores but distinct solvents and space groups achieved via solvent exchange. Magnetic properties reveal that both Dy3 molecules exhibit similar toroidal moments but manifest diverse multiple magnetization dynamic behaviors owing to the spin–lattice coupling influence from different solvent molecules.