Issue 2, 2024

Ruthenium(ii) complexes with phosphonate-substituted phenanthroline ligands as reusable photoredox catalysts

Abstract

Ru(II) complexes with polypyridyl ligands (2,2′-bipyridine = bpy, 1,10-phenanthroline = phen) play a central role in the development of photocatalytic organic reactions. In this work, we synthesized four mixed-ligand [Ru(phen)(bpy)2]2+-type complexes (Ru-Pcat-A) bearing two phosphonate substituents P(O)(OH)(OR) (R = H, Et) attached to the phen core at positions 3,8 (Ru-3,8PH and Ru-3,8PHEt) and 4,7 (Ru-4,7PH and Ru-4,7PHEt) of the heterocycle in high yields (87–99%) and characterized them using spectral methods. Single crystal X-ray diffraction was employed to determine the coordination mode of the ditopic phen ligand in Ru-4,7PH. This complex exists as the neutral species and forms a 1D hydrogen-bonded framework in the crystals. The light absorption characteristics were found to be similar for all complexes prepared in this work. However, the emission maxima in aqueous solutions were significantly affected by the substitution of the heterocycle, ranging from 629 nm for Ru-4,7PH to 661 nm for Ru-3,8PHEt. The emission quantum yields in Ar-saturated deionized water showed a strong dependence on the substitution pattern of the phen ligand, with maximal values reaching approximately 0.11 for Ru-4,7PHEt and Ru-4,7PH, which is twice as high as that of the classical [Ru(bpy)3]2+ complex (Ru-bpy). The photocatalytic performance of Ru-Pcat-A was investigated using visible light photoredox catalytic transformations of tertiary amines. With Ru-Pcat-A, we achieved the phosphonylation of N-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) and cyanation of THIQs and N,N-dimethylaniline in methanol, while a mixture of nitromethane/methanol (1 : 1 v/v) proved to be the optimal solvent for conducting the nitromethylation of THIQs. In the majority of the studied reactions, Ru-4,7PHEt exhibited greater efficiency compared to Ru-bpy, and it could be easily separated from the products using water extraction and reused in the next catalytic cycle. We successfully performed seven consecutive nitromethylation and phosphonylation of N-phenyl-1,2,3,4-tetrahydroisoquinoline using the recycled homogeneous photoredox catalyst.

Graphical abstract: Ruthenium(ii) complexes with phosphonate-substituted phenanthroline ligands as reusable photoredox catalysts

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2023
Accepted
20 Nov 2023
First published
21 Nov 2023

Dalton Trans., 2024,53, 535-551

Ruthenium(II) complexes with phosphonate-substituted phenanthroline ligands as reusable photoredox catalysts

G. V. Morozkov, A. S. Abel, K. A. Lyssenko, V. A. Roznyatovsky, A. D. Averin, I. P. Beletskaya and A. Bessmertnykh-Lemeune, Dalton Trans., 2024, 53, 535 DOI: 10.1039/D3DT02936K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements