Issue 41, 2023

Mononuclear copper(i) complexes bearing a 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole ligand: synthesis, crystal structure, TADF-luminescence, and mechanochromic effects

Abstract

Three new mononuclear heteroleptic copper(I) halide complexes, [CuL(PPh3)2X] (X = Cl, Br, I), based on 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole (L) and triphenylphosphine (PPh3) ligands, have been prepared by reaction of CuX (X = Cl, Br, I), L and PPh3 in a molar ratio of 1 : 1 : 2 in MeCN solutions. The synthesized complexes exhibit blue light emission in solutions and bright green emission in the crystal state with quantum yields of up to 100%. The luminescence decay analysis and density functional theory calculations revealed that the emission of solid samples at room temperature corresponds to the thermally activated delayed fluorescence, while that at 77 K is assigned to phosphorescence. Utilizing the studied complexes in OLED heterostructures resulted in high-performing green-emitting devices with an external quantum efficiency of up to 13.4%.

Graphical abstract: Mononuclear copper(i) complexes bearing a 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole ligand: synthesis, crystal structure, TADF-luminescence, and mechanochromic effects

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2023
Accepted
22 Sep 2023
First published
22 Sep 2023

Dalton Trans., 2023,52, 14995-15008

Mononuclear copper(I) complexes bearing a 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole ligand: synthesis, crystal structure, TADF-luminescence, and mechanochromic effects

A. Gusev, E. Braga, E. Zamnius, M. Kiskin, A. Ali, G. Baryshnikov and W. Linert, Dalton Trans., 2023, 52, 14995 DOI: 10.1039/D3DT02633G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements