Issue 37, 2023

Efficient visible light-initiated hydrogenation of nitrobenzene for chemoselective production of aniline, azoxybenzene, azobenzene and hydrazobenzene over CQDs/CdS nanocomposites

Abstract

Carbon quantum dot (CQD)-decorated CdS nanocomposites were successfully fabricated via the self-assembly of CdS in the presence of preformed CQDs and were found to be efficient photocatalysts for the hydrogenation of nitrobenzene under visible light. Due to the presence of the frustrated Lewis acid–base pairs (FLPs) in their structure, CQDs act as an efficient catalyst to promote the proton-coupled hydrogenation of nitrobenzene over CQDs/CdS nanocomposites. Controllable and chemoselective hydrogenation of nitrobenzene to produce aniline, azoxybenzene, azobenzene and hydrazobenzene can be realized over CQDs/CdS via simply regulating the reaction medium including the hydrogen source, the solvent and the alkalinity. This study provides a highly efficient and economical photocatalytic system for the controllable and chemoselective hydrogenation of nitrobenzene under visible light. This work also highlights the great potential of semiconductor-based photocatalysis in light-initiated organic syntheses.

Graphical abstract: Efficient visible light-initiated hydrogenation of nitrobenzene for chemoselective production of aniline, azoxybenzene, azobenzene and hydrazobenzene over CQDs/CdS nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2023
Accepted
31 Jul 2023
First published
04 Aug 2023

Dalton Trans., 2023,52, 13129-13136

Efficient visible light-initiated hydrogenation of nitrobenzene for chemoselective production of aniline, azoxybenzene, azobenzene and hydrazobenzene over CQDs/CdS nanocomposites

H. Liu, Z. Deng, B. Wang, Z. Ding and Z. Li, Dalton Trans., 2023, 52, 13129 DOI: 10.1039/D3DT02163G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements