Issue 33, 2023

Metal–organic framework based drug delivery systems as smart carriers for release of poorly soluble drugs hydrochlorothiazide and dapsone

Abstract

Drug delivery systems (DDSs) that are derived from biocompatible carriers are attractive platforms for sustained release of drugs. In particular, sustained and controlled release of poorly soluble BCS (Biopharmaceutics Classification System) class IV drugs is important and this requires the development of new DDSs. In this work, we exploit two porous metal–organic frameworks (MOFs) MIL-100(Fe) and MIL-53(Fe) as carriers/DDSs for the release of two BCS class IV drugs hydrochlorothiazide (HCT) and dapsone (DAP). The chosen MOFs are known to possess good physicochemical stability and we realized high drug loading capacity that is attributed to the high porosity of the MOFs. The drug-encapsulated MOFs were characterized thoroughly and our results show ∼23.1% loading of HCT in MIL-100(Fe) and ∼27.6% loading of DAP in MIL-Fe(53), respectively. The release study of these drugs was carried out under simulated physiological conditions that shows sustained release of the drug molecules from the MOFs up to 72 h. Cell viability studies through MTT assays show insignificant cytotoxicity signalling biocompatibility of the proposed DDSs. Our investigations suggest MIL-100(Fe) and MIL-53(Fe) are potential DDSs for enhancing the performance of poorly soluble drugs HCT and DAP.

Graphical abstract: Metal–organic framework based drug delivery systems as smart carriers for release of poorly soluble drugs hydrochlorothiazide and dapsone

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2023
Accepted
26 Jul 2023
First published
26 Jul 2023

Dalton Trans., 2023,52, 11725-11734

Metal–organic framework based drug delivery systems as smart carriers for release of poorly soluble drugs hydrochlorothiazide and dapsone

P. Yadav, P. Bhardwaj, M. Maruthi, A. Chakraborty and P. Kanoo, Dalton Trans., 2023, 52, 11725 DOI: 10.1039/D3DT01301D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements