Issue 19, 2023

Synthesis and transparent conductivity of crack-free La:BaSnO3 epitaxial flexible sheets

Abstract

La-doped BaSnO3 (LBSO), which exhibits both high electron mobility and visible-light transparency, is a promising transparent electrode/transistor material that does not require expensive elements such as indium. However, because a high crystal orientation is necessary for high mobility, the development of a synthetic technique is crucial for next-generation optoelectronic applications. One promising method for achieving this is the lift-off and transfer method. Epitaxial films are first deposited on single-crystal substrates, peeled off from the substrates, and subsequently transferred onto other substrates. However, such transferred sheets typically contain a high density of cracks. Therefore, LBSO sheets with flexibility, high mobility, and transparency have not yet been reported. In this study, we successfully synthesized crack-free LBSO epitaxial sheets via a lift-off and transfer method using a water-soluble Sr3Al2O6 sacrificial layer and amorphous (a-)Al2O3 protection layer. The LBSO sheet simultaneously exhibited a high electron mobility of 80 cm2 V−1 s−1 and a wide optical bandgap of 3.5 eV owing to the epitaxial crystallinity of the sheet. Moreover, two types of LBSO sheets were prepared, flat and rolled sheets, by tuning the lift-off process. The flat sheet had a lateral size of 5 mm × 5 mm, whereas the rolled sheet had a tube shape with a height of 5 mm and a diameter of 1 mm. Such large crack-free area and flexibility were achieved in LBSO sheets owing to the use of the a-Al2O3 protection layer.

Graphical abstract: Synthesis and transparent conductivity of crack-free La:BaSnO3 epitaxial flexible sheets

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2023
Accepted
15 Apr 2023
First published
17 Apr 2023

Dalton Trans., 2023,52, 6317-6323

Author version available

Synthesis and transparent conductivity of crack-free La:BaSnO3 epitaxial flexible sheets

L. Gong, R. Yu, H. Ohta and T. Katayama, Dalton Trans., 2023, 52, 6317 DOI: 10.1039/D3DT01097J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements