Issue 27, 2023

A far-red-emitting ZnAl1.95Cr0.05O4 phosphor for plant growth LED applications

Abstract

ZnAl2−xCrxO4 (x = 0 and 0.05) samples were synthesized via a high-temperature solid-state reaction method. The structure, photoluminescence properties, EPR measurements, thermal stability, and chromaticity diagram of the far-red phosphor ZnAl1.95Cr0.05O4 were investigated. These measurements have enabled us to study the Cr3+ transitions and the site symmetry of Cr3+ in the ZnAl2O4 host lattice and examine the suitability of ZnAl1.95Cr0.05O4 for plant growth application. According to optical and EPR measurements, Cr3+ ions substitute Al3+ ions with D3d symmetry in the ZnAl2O4 host. PLE measurement indicates that upon excitation at 390 nm and 530 nm, the far-red phosphor ZnAl1.95Cr0.05O4 exhibited bright far-red emission around 687 nm. Photoluminescence phenomena show a sharp R line origin from the sublevels of the 2Eg(2G) → 4A2(4F) transition in Cr3+ ions. The 2Eg level was split into 2Egg) and 2Eg (2Āg) levels in the distorted crystal field environment, and the sharp R line in the ZnAl2O4 matrix was split into R1 and R2 lines. In this paper, the temperature-dependent luminescence characteristics of ZnAl1.95Cr0.05O4 have been investigated. As the temperature increased from 300 K to 440 K, a slight decrease in the intensity of the R1 and R2 lines was observed under excitation at 390 nm. The experimental results show that the ZnAl1.95Cr0.05O4 phosphors exhibit a nearly zero-thermal-quenching behavior. The CIE chromaticity coordinates of the ZnAl1.95Cr0.05O4 phosphor were located at the boundary of the chromaticity diagram, signifying that the phosphors possessed high color purity. The emissions of the ZnAl1.95Cr0.05O4 phosphor match well with the PFR absorption of phytochromes in plants. The investigation indicates that ZnAl1.95Cr0.05O4 is a potential far-red phosphor matching ultraviolet (UV) LED chips for plant growth applications.

Graphical abstract: A far-red-emitting ZnAl1.95Cr0.05O4 phosphor for plant growth LED applications

Article information

Article type
Paper
Submitted
29 Mar 2023
Accepted
30 May 2023
First published
22 Jun 2023

Dalton Trans., 2023,52, 9301-9314

A far-red-emitting ZnAl1.95Cr0.05O4 phosphor for plant growth LED applications

I. Elhamdi, F. Mselmi, S. Kammoun, E. Dhahri, A. J. Carvalho, P. Tavares and B. F. O. Costa, Dalton Trans., 2023, 52, 9301 DOI: 10.1039/D3DT00969F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements