Issue 26, 2023

Mixed ligand copper(ii)-diimine complexes of 2-formylpyridine-N4-phenylthiosemicarbazone: diimine co-ligands tune the in vitro nanomolar cytotoxicity

Abstract

Recently, mixed-ligand copper(II) complexes have received much attention in searching for alternative metallodrugs to cisplatin. A series of mixed ligand Cu(II) complexes of the type [Cu(L)(diimine)](ClO4) 1–6, where the HL is 2-formylpyridine-N4-phenylthiosemicarbazone and the diimine is 2,2′-bipyridine (1), 4,4′-dimethyl-2,2′-bipyridine (2), 1,10-phenanthroline (3), 5,6-dimethyl-1,10-phenanathroline (4), 3,4,7,8-tetramethyl-1,10-phenanthroline (5) and dipyrido-[3,2-f:2′,3′-h]quinoxaline (6), has been synthesized and their cytotoxicity in HeLa cervical cancer cells examined. In the molecular structures of 2 and 4, as determined by single-crystal X-ray studies, Cu(II) assumes a trigonal bipyramidal distorted square-based pyramidal (TBDSBP) coordination geometry. DFT studies reveal that the axial Cu–N4diimine bond length, interestingly, varies linearly with the experimental CuII/CuI reduction potential as well as the trigonality index τ of the five-coordinate complexes, and that methyl substitution on diimine co-ligands tunes the extent of the Jahn–Teller distortion at the Cu(II). While 4 is involved in strong DNA groove binding with a hydrophobic interaction of methyl substituents, 6 is involved in stronger binding through partial intercalation of dpq with DNA. Complexes 3, 4, 5, and 6 efficiently cleave supercoiled DNA into NC form in ascorbic acid by generating hydroxyl radicals. Interestingly, 4 exhibits higher DNA cleavage in hypoxic than at normoxic conditions. Notably, except for [CuL]+, all the complexes were stable in 0.5% DMSO-RPMI (without phenol red) cell culture medium up to 48 h at 37 °C. Remarkably, all the complexes show time-dependent cytotoxicity at nanomolar concentrations (IC50, 7.0–182 nM) in HeLa cervical cancer cells compared with uncoordinated ligand HL (IC50 > 10 000 nM). Except for 2 and 3, all the complexes exhibit higher cytotoxicity than [CuL]+ at 48 h. 4 shows (57.2 nM) higher cytotoxicity than 1 (181.5 nM) at 24 h incubation; however, notably, 1 demonstrates phenomenal cytotoxicity (7.0 nM) higher than 4 (13.6 nM) at 48 h incubation. The selectivity index (SI) reveals that complexes 1 and 4 are 53.5 and 37.3, respectively, times less toxic to HEK293 normal cells than to cancerous cells. Except for [CuL]+, all the complexes generate ROS to different extents at 24 h, with 1 producing the highest amount, which is consistent with their redox properties. Also, 1 and 4 exhibit, respectively, sub-G1 and G2-M phase cell arrest in the cell cycle. Therefore, complexes 1 and 4 have the potential to emerge as promising anticancer agents.

Graphical abstract: Mixed ligand copper(ii)-diimine complexes of 2-formylpyridine-N4-phenylthiosemicarbazone: diimine co-ligands tune the in vitro nanomolar cytotoxicity

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2023
Accepted
17 May 2023
First published
23 May 2023

Dalton Trans., 2023,52, 9148-9169

Mixed ligand copper(II)-diimine complexes of 2-formylpyridine-N4-phenylthiosemicarbazone: diimine co-ligands tune the in vitro nanomolar cytotoxicity

R. Kartikeyan, D. Murugan, T. Ajaykamal, M. Varadhan, L. Rangasamy, M. Velusamy, M. Palaniandavar and V. Rajendiran, Dalton Trans., 2023, 52, 9148 DOI: 10.1039/D3DT00213F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements