Electrochemically stable frustrated Lewis pairs on dual-metal hydroxides for electrocatalytic CO2 reduction†
Abstract
The sluggish kinetics of CO2 activation and reduction severely limit the energy conversion efficiency of electrocatalytic CO2 reduction into fuels. Here, ZnSn(OH)6 with an alternating arrangement of Zn(OH)6 and Sn(OH)6 octahedral units and SrSn(OH)6 with an alternating arrangement of SrO6 and Sn(OH)6 octahedral units were adopted to check the effects of frustrated Lewis pairs (FLPs) on electrochemical CO2 reduction. The FLPs were in situ electrochemically reconstructed on ZnSn(OH)6 by reducing the electrochemically unstable Sn–OH to Sn–oxygen vacancies (Sn–OVs) as a Lewis acid site, which are able to create strong interactions with the adjacent electrochemically stable Zn–OH, a Lewis base site. Compared to SrSn(OH)6 without FLPs, the higher formate selectivity of ZnSn(OH)6 originates from the strong ability of FLPs to capture protons and activate CO2via the electrostatic field of FLPs triggering better electron transfer and strong orbital interactions under negative potentials. Our findings may guide the design of electrocatalysts for CO2 reduction with high catalytic performances.