Issue 9, 2023

Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions

Abstract

MXenes have been extensively studied due to their high metallic conductivity, hydrophilic properties, tunable layer structure and attractive surface chemistry, making them highly desirable for energy-related applications. However, slow catalytic reaction kinetics and limited active sites have severely impeded their further practical applications. Surface engineering of MXenes has been rationally designed and investigated to regulate their electronic structure, increase the density of active sites, optimize the binding energy, and thus boost the electrocatalytic performance. In this review, we comprehensively summarized the surface engineering strategies for MXene nanostructures, including surface termination engineering, defect engineering, heteroatom doping engineering (metals or non-metals), secondary material engineering, and extension to MXene analogues. By identifying the roles of each component in the engineered MXenes at the atomic level, their intrinsic active sites have been discussed to establish the relationships between the atomic structures and catalytic activities. We highlighted the state-of-the-art progress of MXenes in electrochemical conversion reactions including hydrogen, oxygen, carbon dioxide, nitrogen and sulfur conversion reactions. The challenges and perspectives of MXene-based catalysts for electrochemical conversion reactions are presented to inspire more efforts toward the understanding and development of MXene-based materials to meet the ever-growing demand for a sustainable future.

Graphical abstract: Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions

Article information

Article type
Review Article
Submitted
10 Nov 2022
First published
19 Apr 2023

Chem. Soc. Rev., 2023,52, 3215-3264

Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions

Y. Zhao, J. Zhang, X. Guo, X. Cao, S. Wang, H. Liu and G. Wang, Chem. Soc. Rev., 2023, 52, 3215 DOI: 10.1039/D2CS00698G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements