Issue 9, 2023

Dinuclear metal synergistic catalysis for energy conversion

Abstract

Catalysts featuring dinuclear metal sites are regarded as superior systems compared with their counterparts with mononuclear metal sites. The dinuclear metal sites in catalysts with appropriate spatial separations and geometric configurations can confer the dinuclear metal synergistic catalysis (DMSC) effect, and thus boost the catalytic performance, in particular for reactions involving multiple reactants, intermediates and products. In this review, we summarize the related reports on the design and synthesis of both homogeneous and heterogeneous dinuclear metal catalysts, and their applications in energy conversion reactions, including photo-/electro-catalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), CO2 reduction reaction (CO2RR), and N2 reduction reaction (N2RR). Particularly, we focus on the analysis of the relationship between the catalyst structure and catalytic performances, where the design principles are presented. Finally, we discuss the challenges in the design and preparation of dinuclear metal catalysts with the DMSC effect and present a perspective on the future development of dinuclear metal catalysts in energy conversion. This review aims to comprehensively summarize the up-to-date research progress on the synthesis and energy-related application of dinuclear metal catalysts and provide guidance for designing energy-conversion catalysts with superior performances.

Graphical abstract: Dinuclear metal synergistic catalysis for energy conversion

Article information

Article type
Review Article
Submitted
31 Jan 2023
First published
18 Apr 2023

Chem. Soc. Rev., 2023,52, 3170-3214

Dinuclear metal synergistic catalysis for energy conversion

D. Zhong, Y. Gong, C. Zhang and T. Lu, Chem. Soc. Rev., 2023, 52, 3170 DOI: 10.1039/D2CS00368F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements