A geopolymer membrane for application in a structural mechanics and energy storage difunctional supercapacitor†
Abstract
A structural mechanics and energy storage difunctional supercapacitor based on a geopolymer membrane injected with a 0.5 M Na2SO4 electrolyte and a pseudocapacitive electrode Mn7O13 is designed and assembled. The geopolymer membrane is prepared as a structural electrolyte with metakaolin and alkaline activator solution. The wide channels in the geopolymer matrix provide paths for ion movement. The Mn7O13 electrode is prepared by different hydrothermal treatments at different temperatures and times, and assembled with activated carbon and a geopolymer with different moduli to form a difunctional supercapacitor. The results show that the electrode sample annealed at 300 °C for 45 min after hydrothermal treatment at 160 °C for 24 h exhibits the best comprehensive performance. The specific capacitance of the electrode is 175.5 F g−1 (2392.6 F m−2) at 1 A g−1, and the specific capacitance of the difunctional structure supercapacitor assembled with a geopolymer with a modulus of 1.2 and cured for 28 days is 144.12 F g−1 (1960.0F m−2) at 1 A g−1 under 15 MPa.