Issue 39, 2023

Probing the inner local density of complex macromolecules by pyrene excimer formation

Abstract

The direct relationship existing between the average rate constant 〈k〉 for pyrene excimer formation and the local concentration [Py]loc of ground-state pyrenyl labels covalently attached to a macromolecule was established for 55 pyrene-labeled macromolecules (PyLM). These PyLM belonged to three different families of macromolecules with the first representing short monodisperse linear chains end-labeled with pyrene (polystyrene, poly(ethylene oxide), and poly(N-isopropyl acrylamide)), the second representing long polydisperse linear chains randomly labeled with pyrene (poly(methyl acrylate), poly(methyl methacrylate), polystyrene, poly(butyl methacrylate), poly(methoxyethyl methacrylate), and poly(N-isopropyl acrylamide)), and the third being comprised of two series of pyrene end-labeled low generation dendrimers with a bis(hydroxymethyl)propionic acid or a polyamidoamine backbone. The assumption, that the polymeric segments probed by an excited pyrenyl label covalently attached to one of these macromolecules obeyed Gaussian statistics, enabled the calculation of their square root average squared end-to-end distance (LPy), which was applied to calculate [Py]loc. The log–log plots of 〈k〉 as a function of [Py]loc yielded straight lines with a slope of unity for all families of macromolecules studied in four different organic solvents demonstrating the validity and generality of the 〈k〉-vs.-[Py]loc relationship. Since an experimentalist knows how the the pyrenyl labels are covalently attached onto a macromolecule, [Py]loc offers a means to probe the local density of a macromolecule, which can be employed to characterize its conformation in solution. Consequently, the 〈k〉-vs.-[Py]loc relationship provides a novel experimental means to probe the conformation of macromolecules which should establish pyrene excimer formation as an appealing method for conformational studies of macromolecules in solution, which should nicely complement scattering techniques.

Graphical abstract: Probing the inner local density of complex macromolecules by pyrene excimer formation

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2023
Accepted
18 Aug 2023
First published
21 Aug 2023

Phys. Chem. Chem. Phys., 2023,25, 26515-26525

Probing the inner local density of complex macromolecules by pyrene excimer formation

H. Little, S. Patel and J. Duhamel, Phys. Chem. Chem. Phys., 2023, 25, 26515 DOI: 10.1039/D3CP02958A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements