Rational design of MXene-based single atom catalysts for Na–Se batteries from sabatier principle†
Abstract
Na–Se batteries have attracted great attention because of their high-energy density and low cost, though the shuttle effect of polyselenides and sluggish reaction dynamics still limit their practical applications. Herein, MXenes were decorated with single zinc atom as selenium hosts, and the effect of interfacial electrochemical reaction was studied via first-principles simulation. The embedding of single zinc atom into MXenes was found to enhance the anchoring ability to inhibit the shuttle effect. However, Zn-MXenes as single atom catalysts had different effects on interfacial electrochemical reactions, which can be attributed to the increased interaction strengths between Zn-MXenes and polyselenides. For Ti-based MXenes, the enhanced interaction was found to be beneficial for the electrochemical reaction, whereas the overly strong anchoring strength of Zn–Cr2CO2 would inhibit charging–discharging kinetics. Therefore, the matching of MXenes and metal atoms should be considered to adjust the anchoring ability based on the Sabatier principle. This work provides new insights into the design of SACs and high-performance Na–Se batteries.