Issue 29, 2023

Theoretical study of hydrogen abstraction by HO2 radicals from primary straight chain amines CnH2n+1-NH2 (n = 1–4)

Abstract

Hydrogen abstraction reactions by HO2 radicals from four primary amines including methylamine (MA), ethylamine (EA), n-propylamine (PA), and n-butylamine (BA), are investigated and the effect of the functional group on rate constants at different reaction sites is examined. A hybrid functional BH&HLYP coupled with cc-pVTZ as the basis set is utilized to determine geometry optimizations, frequencies, and connections between transition states and corresponding local minima. By comparing the reaction energies obtained by several density functional theory methods to those obtained using the gold-standard CCSD(T)/CBS(T-Q) method, the M08-HX/maug-cc-pVTZ combination is identified as the best suitable method with a mean unsigned deviation of 0.81 kcal mol−1. This method is then applied to construct the potential energy surface for all the reaction systems. High-pressure limit rate constants at 500–2500 K are calculated through variation transition state theory and conventional transition state theory, including a one-dimensional hindered rotor treatment and asymmetrical Eckart tunneling correction. The branching ratio analysis suggests that the hydrogen abstraction at the C site adjacent to the NH2 functional group (α reaction site) dominates the reactions. Linear Bell–Evans–Polanyi and Bell–Evans correlations are observed for the hydrogen abstractions at the C reaction sites. Furthermore, a scheme to estimate the rate constants for the CnH2n+1-NH2 + HO2 reaction system is presented.

Graphical abstract: Theoretical study of hydrogen abstraction by HO2 radicals from primary straight chain amines CnH2n+1-NH2 (n = 1–4)

Article information

Article type
Paper
Submitted
12 Apr 2023
Accepted
26 Jun 2023
First published
06 Jul 2023

Phys. Chem. Chem. Phys., 2023,25, 19943-19951

Theoretical study of hydrogen abstraction by HO2 radicals from primary straight chain amines CnH2n+1-NH2 (n = 1–4)

Y. Bao, X. Liu, Z. He and J. Shi, Phys. Chem. Chem. Phys., 2023, 25, 19943 DOI: 10.1039/D3CP01676E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements