Issue 32, 2023

Superhard bulk C4N3 compounds with metal-free magnetism assembled from two-dimensional C4N3: a first-principles study

Abstract

Enriching the electronic properties of superhard materials is very important to extend their applications, and some superhard materials with metallic or superconducting characteristics have been designed via theoretical or experimental methods. However, their magnetic features have scarcely been studied, since most of them are limited to nonmagnetic ordering. Here, with the help of first-principles calculations, a series of C4N3 compounds are designed by stacking C4N3 sheets with different sequences. As expected, some of them exhibit both magnetic and superhard characteristics. Notably, all these compounds exhibit dynamic and mechanical stabilities, indicating that their dynamic and mechanical stabilities are independent of the stacking sequence. Among them, the ABC-stacked one is energetically favorable, and it exhibits antiferromagnetic ordering and has a hardness of ∼54.0 GPa, and the electronic calculations show that it is a semiconductor with a direct band gap of ∼1.20 eV. Besides, the magnetism of all magnetic C4N3 compounds is caused by the lower coordinated atoms, and the magnetic moments are located on three-fold C or two-fold coordinated N atoms. Additionally, the magnetic property is deeply dependent on the external pressure. This work opens a potential way to design magnetic superhard materials and can arouse their applications in the spintronic field.

Graphical abstract: Superhard bulk C4N3 compounds with metal-free magnetism assembled from two-dimensional C4N3: a first-principles study

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2023
Accepted
18 Jul 2023
First published
20 Jul 2023

Phys. Chem. Chem. Phys., 2023,25, 21408-21415

Superhard bulk C4N3 compounds with metal-free magnetism assembled from two-dimensional C4N3: a first-principles study

H. Wu, Y. Li, Y. Qian and E. Kan, Phys. Chem. Chem. Phys., 2023, 25, 21408 DOI: 10.1039/D3CP01619F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements