Issue 4, 2023

Formation of heterogeneous clusters in superfluid helium nanodroplets: phthalocyanine and water

Abstract

Clusters consisting of a single phthalocyanine molecule and a single water molecule are investigated by means of electronic spectroscopy in superfluid helium droplets. A recent spectroscopic study of those clusters [J. Fischer, F. Schlaghaufer, E.-M. Lottner, A. Slenczka, L. Christiansen, H. Stapelfeldt, M. Karra, B. Friedrich, T. Mullan, M. Schütz and D. Usvyat, J. Phys. Chem. A, 2019, 123, 10057–10064] which all exhibit a water induced electronic shift to the red is now complemented by the corresponding clusters exhibiting a water induced shift to the blue. These clusters will be analyzed by means of fluorescence excitation spectra, dispersed emission spectra, and additional experimental observations made feasible by helium droplets as cryogenic reactor. Together with the blue shifted clusters a total number of at least 6 isomeric variants could be identified in helium droplets. This contrasts to a number of only three isomeric variants obtained from quantum chemical calculations [J. Fischer, F. Schlaghaufer, E.-M. Lottner, A. Slenczka, L. Christiansen, H. Stapelfeldt, M. Karra, B. Friedrich, T. Mullan, M. Schütz and D. Usvyat, J. Phys. Chem. A, 2019, 123, 10057–10064] disregarding the helium environment and to a single isomer identified in a molecular beam experiment [J. Menapace and E. Bernstein, J. Chem. Phys., 1987, 87, 6877–6889]. The discrepancy in the number of isomers provides evidence of a profound involvement of helium in clustering. Moreover, the discrepancies between the gas phase experiment and quantum chemical calculations similarly reveal the influence of the dynamics of cluster formation on the population of global and local minima that are accessible as isomeric variants.

Graphical abstract: Formation of heterogeneous clusters in superfluid helium nanodroplets: phthalocyanine and water

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2022
Accepted
27 Dec 2022
First published
04 Jan 2023

Phys. Chem. Chem. Phys., 2023,25, 3287-3297

Formation of heterogeneous clusters in superfluid helium nanodroplets: phthalocyanine and water

J. Fischer and A. Slenczka, Phys. Chem. Chem. Phys., 2023, 25, 3287 DOI: 10.1039/D2CP04514A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements