A step-by-step strategy to design active and stable quaternary intermetallic compounds for the hydrogen evolution reaction†
Abstract
Multinary intermetallic compounds with rich chemical compositions enable one to achieve a logical design for desired materials based on the required function. In this work, we have demonstrated a step-by-step strategy to design a quaternary intermetallic compound that exhibits highly active and stable performance for the hydrogen evolution reaction (HER). With binary intermetallic TaCo2 as the starting point, the minor inclusion of a ductile Cu element in TaCo2 to form ternary TaCu0.25Co1.75 can substantially lower the degradation rate from ca. 20% to 5% after sintering treatment (i.e., enhance connectivity between particles). However, the overpotential at a current density of 10 mA cm−2 (η10) increases by ca. 20 mV from TaCo2 to TaCu0.25Co1.75. Further incorporation of a HER active Ru element to cast quaternary TaCu0.125Ru0.125Co1.75 can decrease ca. 70 mV of η10 while maintaining long-term stability. This proves that one can design functional intermetallic compounds intentionally, which may be extended to different fields of application.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        