An antibacterial and healing-promoting collagen fibril constructed by the simultaneous strategy of fibril reconstitution and ε-polylysine anchoring for infected wound repair†
Abstract
The development of antibacterial dressings has attracted much attention to address the disordered wound healing caused by bacterial infection. Constructing dressings that have desirable antibacterial activity and could promote wound healing is important for infected wound repair. Inspired by the role of the key regulator collagen fibrils with D-periodic functional domains in the physiological wound healing process, we developed an antibacterial and wound healing-promoting collagen fibril with a structure highly similar to natural collagen in ECM and inherent antibacterial activity by the simultaneous strategy of fibril reconstitution and the antibacterial agent ε-polylysine (ε-PL) anchoring. Accompanied by the fibrillogenesis of collagen molecules, the anchorage of ε-PL into collagen fibrils was actualized through the formation of the covalent bond catalyzed by transglutaminase (TGase) between ε-PL and collagen. The collagen fibril possessed natural D-periodicity and achieved 20% ε-PL graft yield by co-assembling collagen/ε-PL mediated by 25 U g−1 TGase, which showed a satisfactory proliferation of L929 fibroblasts and sustained inhibition rates above 90% against E. coli and S. aureus. The rat S. aureus-infected dermal wound model further demonstrated that the reconstituted antibacterial collagen fibril visibly promoted re-epithelialization, new collagen deposition, and angiogenesis by down-regulating the inflammatory-relative gene IL-6 and up-regulating the relative activity factor expression of CD31, achieving accelerated infected wound healing with 61.89% ± 3.96% wound closure on postoperative day 7 and full closure on day 14.