Issue 38, 2023

Surface-enhanced Raman spectroscopy hair analysis after household contamination

Abstract

Trace evidence found at crime scenes is rarely in an unsullied condition. Surface-enhanced Raman spectroscopy (SERS) is a modern analytical technique that can be used for the detection of artificial hair colourants (S. Higgins and D. Kurouski, Surface-Enhanced Raman Spectroscopy Enables Highly Accurate Identification of Different Brands, Types and Colors of Hair Dyes, Talanta, 2022, 251, 123762). However, contaminants pose a problem to collecting accurate spectra from the dyes. In this study, we sought to analyze how the different physical properties of contaminants can influence the collected spectra. We utilized 11 household substances of varying viscosity and opacity to contaminate hair dyed with permanent black or semi-permanent blue dyes. We discovered that contaminant opacity generally does not affect the spectral quality but that high contaminant viscosity does and that acidic substances could destroy the colourant's spectral identity altogether. Cleaning the contaminated hair with a water rinse allowed the underlying colourant to be identified in 21 out of 22 cases. Overall, this study provided a clearer understanding of the capabilities and limitations of SERS in forensic hair analysis.

Graphical abstract: Surface-enhanced Raman spectroscopy hair analysis after household contamination

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2023
Accepted
15 Aug 2023
First published
15 Aug 2023

Anal. Methods, 2023,15, 4996-5001

Surface-enhanced Raman spectroscopy hair analysis after household contamination

I. Juarez and D. Kurouski, Anal. Methods, 2023, 15, 4996 DOI: 10.1039/D3AY01219K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements