Issue 32, 2023

Nitrogen carrier gas for the separation of trace explosives on CI-GC/MS

Abstract

Fluctuations in ultra high purity (UHP) helium supply has the potential to negatively impact critical research efforts. Disruptions have increased significantly with suppliers prioritizing delivery to medical facilities. Due to the greater demand for helium, supply issues are likely to continue through the coming years. Many gas chromatography (GC)-based analytical methods rely on the supply of UHP helium, including those developed for the quantification of trace explosives. Vapor validation is critical in establishing sensor performance, limits of detection, and instrument performance. An alternate carrier gas must be established to maintain these critical functionalities. To circumvent the UHP helium disruptions, UHP nitrogen was explored as a replacement carrier gas in negative mode chemical ionization-gas chromatography/mass spectrometry (CI-GC/MS). Although, hydrogen is considered an acceptable alternative to helium in most GC-based separations, its' use as a replacement was omitted due to reactivity resulting in degradation of the CI-MS detector and incompatibility with the programmable temperature vaporization inlet on the GC used in this work. Herein discusses the method development of nitrogen carrier gas in the separation of an explosives mixture. Adjustments in flow rate, initial oven temperature, and ramp rate were made to achieve comparable analysis to that of helium. By lowering the flow rate and initial oven temperature peak resolution and sensitivity increased when using nitrogen carrier gas. Development of this method allows for continual laboratory output in times of helium scarcity.

Graphical abstract: Nitrogen carrier gas for the separation of trace explosives on CI-GC/MS

Article information

Article type
Technical Note
Submitted
04 May 2023
Accepted
25 Jul 2023
First published
27 Jul 2023

Anal. Methods, 2023,15, 4044-4048

Nitrogen carrier gas for the separation of trace explosives on CI-GC/MS

A. C. Fulton, C. J. Katilie and B. C. Giordano, Anal. Methods, 2023, 15, 4044 DOI: 10.1039/D3AY00701D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements