A portable electrochemical sensing platform for serotonin detection based on surface-modified carbon fiber microelectrodes†
Abstract
Serotonin (5-HT) is one of the key neurotransmitters in the human body, regulating numerous physiological functions. A disruption in 5-HT homeostasis could result in serious health problems, including neurodegenerative disorders, depression, and 5-HT syndrome. Detection of 5-HT concentrations in biological fluids, such as urine, is a potential solution for early diagnosis of these diseases. In this study, we developed a novel, simple, and low-cost electrochemical sensing platform consisting of a portable workstation with customized electrodes for 5-HT detection in artificial biological fluids. Nafion/carbon nanotubes (CNTs) and electrochemically modified carbon fiber microelectrodes (Nafion–CNT/EC CFMEs) displayed improved 5-HT sensitivity and selectivity. Together with a customized Ag/AgCl reference electrode and Pt counter electrode, the portable 5-HT sensing platform had a sensitivity of 0.074 μA μM−1 and a limit of detection (LOD) of 140 nM. This system was also assessed to measure 5-HT spiked in artificial urine samples, showing nearly full recovery rates. These satisfactory results demonstrated that the portable system exhibits outstanding performance and confirmed the feasibility of 5-HT detection, which can be used to provide point-of-care analysis in actual biological samples.