A novel DNA-quantum dot nanostructure electrochemiluminescence aptamer sensor by chain reaction amplification for rapid detection of trace Cd2+†
Abstract
This work proposes a new enzyme-free electrochemiluminescence (ECL) sensing platform based on a novel DNA-quantum dot (QD) nanostructure and hybridization chain reaction (HCR) amplification for the trace detection of Cd2+. First, the Cd2+ aptamer triggers the HCR amplification circuit, so abundant biotin-labeled DNAs are introduced to the electrode, and then biotin as a linker specifically captures a large number of streptavidin (SA)-CdS QD complexes, showing very high ECL signals. After the present Cd2+ binds to its aptamer on the electrode, it causes the linear DNA structure loaded with a large number of QDs to break away from the electrode, resulting in a significantly decreased ECL response. This method combines the HCR-amplified DNA structure-QD signal with the specificity of the biotin–avidin reaction, enabling the rapid detection of Cd2+ in complex water. Therefore, this sensor provides a novel and competitive strategy for detecting heavy metal ions in actual samples, which extends its application to practical settings, such as environmental monitoring and biomedical diagnostics.

Please wait while we load your content...