Detection of saxitoxin by a SERS aptamer sensor based on enzyme cycle amplification technology
Abstract
Saxitoxin (STX) is a typical toxic guanidinium neurotoxin, one of the paralytic shellfish poisons (PSP), which poses a serious threat to human health. In this paper, a simple and sensitive SERS aptamer sensor (abbreviated as AuNP@4-NTP@SiO2) for the quantitative determination of STX was developed. Hairpin aptamers of saxitoxin are modified on magnetic beads and used as recognition elements. In the presence of STX, DNA ligase, and the rolling circle template (T1), a rolling circle amplification reaction was triggered to produce long single-stranded DNA containing repetitive sequences. The sequence can be hybridized with the SERS probe to realize the rapid detection of STX. Due to the inherent merits of its components, the obtained AuNP@4-NTP@SiO2 SERS aptamer sensor manifests excellent sensing performance for STX detection with a wide linear range from 2.0 × 10−10 mol L−1 to 5.0 × 10−4 mol L−1 and a lower detection limit of 1.2 × 10−11 mol L−1. This SERS sensor can provide a strategy for the micro-detection of other biological toxins by changing the aptamer sequence.