Issue 5, 2023

MIP integrated surface plasmon resonance in vitro detection of sodium benzoate

Abstract

Food safety is a major concern, with several new diseases arising from unhealthy foods and their composition. Our lifestyle leads us to use ready-to-eat and ready-to-cook foods. The use of preservatives is necessary to make these foods long-lasting. Sodium Benzoate (SB) is one of the most used preservatives in foodstuffs due to its antifungal and antibacterial properties and it also works as a microbial agent. SB keeps foodstuffs fresh and prevents mould and spoilage. The permissible limit of SB is 0–5 mg per kg of body weight per day, which is generally recognized to be safe, as a high intake of SB may increase your risk of inflammation, oxidative stress, obesity, allergies, and disrupting hormones. Therefore, one needs to design a rapid, sensitive, and selective sensor for SB detection. Thus, in this work, we report a Kretschmann-based surface plasmon resonance (SPR) sensor for the detection of SB using the molecularly imprinted polymer (MIP) method over silver-coated SF-11 glass. The wavelength interrogation method was used for the characterization of the Ag/MIP probe. The SPR spectra were blue-shifted with increasing concentrations of SB. The detection range of the sensor is found to be from 0–40 μg ml−1 and the sensor gets saturated beyond these concentrations. The proposed sensor has high sensitivity and a high figure of merit (FOM) at low concentrations, with these parameters decreasing with increasing SB concentration. The sensor is highly selective for SB as it does not respond to the other chemical compounds we tested, – atrazine, melamine and chitosan. The limit of detection of the sensor is found to be 0.083 μg ml−1, which is very low compared to other reported methods for SB sensing. The FOM is recorded as 0.026 (μg ml−1)−1 for 4 μg ml−1 concentration. This sensor works within the permissible limit and beyond for SB. This sensor can be utilized for the detection of traces of SB in packed food/juice, pickles, drinks, wines, sauces, and ready-to-cook foodstuffs, and also in personal care products: serums, toothpaste etc. This sensor is cost-effective, highly selective, reliable, easy to handle and has the advantage of online monitoring.

Graphical abstract: MIP integrated surface plasmon resonance in vitro detection of sodium benzoate

Article information

Article type
Paper
Submitted
21 Nov 2022
Accepted
29 Dec 2022
First published
04 Jan 2023

Analyst, 2023,148, 1141-1150

MIP integrated surface plasmon resonance in vitro detection of sodium benzoate

P. Maurya and R. Verma, Analyst, 2023, 148, 1141 DOI: 10.1039/D2AN01910H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements