Issue 7, 2023

A charge-free and membrane-free hybrid capacitive mixing system for salinity gradient energy harvesting

Abstract

Capacitive mixing (CapMix) is a promising technology to harvest salinity gradient energy (SGE) by generating electricity through the potential difference owing to electrolyte salinity change at the electrode/electrolyte interface. However, existing CapMix methods suffer from the high cost of ion-exchange membranes, additional energy investment, and limited energy density and cycle life. Herein, we propose a charge-free and membrane-free hybrid CapMix system consisting of ethylenediamine-modified activated carbon (EDA-YP80F) as a capacitive anode and a Prussian blue analog, iron hexacyanoferrate (FeHCF), as a battery-type cathode. The selective incorporation/absorption of Na+ ions and Cl ions into FeHCF and EDA-YP80F achieves a membrane-free operation. The matching potentials of FeHCF and EDA-YP80F enable reversible discharges to a final voltage of zero, eliminating the energy investment by external power sources. Without an external power source and membranes, the FeHCF/EDA-YP80F full cell achieves an average power density of 110 mW m−2 and energy density of 117 J m−2 over 150 cycles under the 1–0.01 M NaCl salinity gradient. Under a high salinity gradient involving hypersaline solutions, i.e., 5–0.01 M NaCl, a remarkably high average power density of 218 mW m−2 and energy density of 305 J m−2 are demonstrated over 50 cycles.

Graphical abstract: A charge-free and membrane-free hybrid capacitive mixing system for salinity gradient energy harvesting

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2022
Accepted
19 Dec 2022
First published
20 Dec 2022

J. Mater. Chem. A, 2023,11, 3388-3398

A charge-free and membrane-free hybrid capacitive mixing system for salinity gradient energy harvesting

B. Yang, J. Yu and T. Ma, J. Mater. Chem. A, 2023, 11, 3388 DOI: 10.1039/D2TA08213F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements