Issue 33, 2023, Issue in Progress

Low-carbon footprint diluents in solvent extraction for lithium-ion battery recycling

Abstract

This study investigated the influence of the diluent on the extraction properties of three extractants towards cobalt(II), nickel(II), manganese(II), copper(II), and lithium(I), i.e. Cyanex® 272 (bis-(2,4,4-trimethylpentyl)phosphinic acid), DEHPA (bis-(2-ethyl hexyl)phosphoric acid), and Acorga® M5640 (alkylsalicylaldehyde oxime). The diluents used in the formulation of the extraction solvents are (i) low-odour aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205 and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). No influence of the diluent and no co-extraction of lithium(I), nickel(II), cobalt(II), manganese(II) and aluminum were observed during copper(II) extraction by Acorga M5640. The nature of the diluent influenced more significantly the extraction properties of manganese(II) by DEHPA as well as cobalt(II) and nickel(II) by Cyanex® 272. Life cycle assessment of the diluents shows that the carbon footprints of the investigated diluents followed the following order: (ELIXORE 180, ELIXORE 230, ELIXORE 205) from petroleum industry > kerosene from petroleum industry > diluent produced from tall oil (DEV 2063) > diluents produced from recycled plastic (DEV 2160, DEV 2161) > diluents produced from used cooking oil (DEV 2138, DEV 2139). By taking into account the physicochemical properties of these diluents (viscosity, flashpoint, aromatic content), the extraction properties of Acorga® M5640, DEHPA, Cyanex® 272 in these diluents and the CO2 footprint of the diluents, this study showed DEV2063 and DEV2139 were the best diluents. A low-carbon footprint solvent extraction flowsheet using these diluents was proposed to extract selectively cobalt, nickel, manganese, lithium and copper from NMC black mass of spent lithium-ion batteries.

Graphical abstract: Low-carbon footprint diluents in solvent extraction for lithium-ion battery recycling

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2023
Accepted
27 Jul 2023
First published
02 Aug 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 23334-23345

Low-carbon footprint diluents in solvent extraction for lithium-ion battery recycling

A. M. Ahamed, B. Swoboda, Z. Arora, J. Y. Lansot and A. Chagnes, RSC Adv., 2023, 13, 23334 DOI: 10.1039/D3RA04679F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements