Impact of multiple H/D replacements on the physicochemical properties of flurbiprofen†
Abstract
Although deuterium incorporation into pharmaceutical drugs is an attractive way to expand drug modalities, their physicochemical properties have not been sufficiently examined. This study focuses on examining the changes in physicochemical properties between flurbiprofen (FP) and flurbiprofen-d8 (FP-d8), which was successfully prepared by direct and multiple H/D exchange reactions at the eight aromatic C–H bonds of FP. Although the effect of deuterium incorporation was not observed between the crystal structures of FP and FP-d8, the melting point and heat of fusion of FP-d8 were lower than those of FP. Additionally, the solubility of FP-d8 increased by 2-fold compared to that of FP. Calculation of the interaction energy between FP/FP-d8 and water molecules using the multi-component density functional theory method resulted in increased solubility of FP-d8. These novel and valuable findings regarding the changes in physicochemical properties triggered by deuterium incorporation can contribute to the further development of deuterated drugs.