Issue 17, 2023

A point-of-care microfluidic biosensing system for rapid and ultrasensitive nucleic acid detection from clinical samples

Abstract

Rapid and ultrasensitive point-of-care RNA detection plays a critical role in the diagnosis and management of various infectious diseases. The gold-standard detection method of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is ultrasensitive and accurate yet limited by the lengthy turnaround time (1–2 days). On the other hand, an antigen test offers rapid at-home detection (typically ~15 min) but suffers from low sensitivity and high false-negative rates. An ideal point-of-care diagnostic device would combine the merits of PCR-level sensitivity and rapid sample-to-result workflow comparable to antigen testing. However, the existing detection platforms typically possess superior sensitivity or rapid sample-to-result time, but not both. This paper reports a point-of-care microfluidic device that offers ultrasensitive yet rapid detection of viral RNA from clinical samples. The device consists of a microfluidic chip for precisely manipulating small volumes of samples, a miniaturized heater for viral lysis and ribonuclease inactivation, a Cas13a-electrochemical sensor for target preamplification-free and ultrasensitive RNA detection, and a smartphone-compatible potentiostat for data acquisition. As demonstrations, the devices achieve the detection of heat-inactivated SARS-CoV-2 samples with a limit of detection down to 10 aM within 25 minutes, which is comparable to the sensitivity of RT-PCR and rapidness of an antigen test. The platform also successfully distinguishes all nine positive unprocessed clinical SARS-CoV-2 nasopharyngeal swab samples from four negative samples within 25 minutes of sample-to-result time. Together, this device provides a point-of-care solution that can be deployed in diverse settings beyond laboratory environments for rapid and accurate detection of RNA from clinical samples. The device can potentially be expandable to detect other viral targets, such as human immunodeficiency virus self-testing and Zika virus, where rapid and ultrasensitive point-of-care detection is required.

Graphical abstract: A point-of-care microfluidic biosensing system for rapid and ultrasensitive nucleic acid detection from clinical samples

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2023
Accepted
17 Jun 2023
First published
26 Jul 2023

Lab Chip, 2023,23, 3862-3873

A point-of-care microfluidic biosensing system for rapid and ultrasensitive nucleic acid detection from clinical samples

Y. Zhang, Y. Song, Z. Weng, J. Yang, L. Avery, K. D. Dieckhaus, R. Y. Lai, X. Gao and Y. Zhang, Lab Chip, 2023, 23, 3862 DOI: 10.1039/D3LC00372H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements