Issue 19, 2023

Material-level countermeasures for securing microfluidic biochips

Abstract

Flow-based microfluidic biochips (FMBs) have been rapidly commercialized and deployed in recent years for biological computing, clinical diagnostics, and point-of-care-tests (POCTs). However, outsourcing FMBs makes them susceptible to material-level attacks by malicious actors for illegitimate monetary gain. The attacks involve deliberate material degradation of an FMB's polydimethylsiloxane (PDMS) components by either doping with reactive solvents or altering the PDMS curing ratio during fabrication. Such attacks are stealthy enough to evade detection and deteriorate the FMB's function. Furthermore, material-level attacks can become prevalent in attacks based on intellectual property (IP) theft, such as counterfeiting, overbuilding, etc., which involve unscrupulous third-party manufacturers. To address this problem, we present a dynamic material-level watermarking scheme for PDMS-based FMBs with microvalves using a perylene-labeled fluorescent dye. The dyed microvalves show a unique excimer intensity peak under 405 nm laser excitation. Moreover, when pneumatically actuated, the peak shows a predetermined downward shift in intensity as a function of mechanical strain. We validated this protection scheme experimentally using fluorescence microscopy, which showed a high correlation (R2 = 0.971) between the normalized excimer intensity change and the maximum principal strain of the actuated microvalves. To detect curing ratio-based attacks, we adapted machine learning (ML) models, which were trained on the force-displacement data obtained from a mechanical punch test method. Our ML models achieved more than 99% accuracy in detecting curing ratio anomalies. These countermeasures can be used to proactively safeguard FMBs against material-level attacks in the era of global pandemics and diagnostics based on POCTs.

Graphical abstract: Material-level countermeasures for securing microfluidic biochips

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2023
Accepted
13 Aug 2023
First published
14 Aug 2023

Lab Chip, 2023,23, 4213-4231

Material-level countermeasures for securing microfluidic biochips

N. S. Baban, S. Saha, S. Jancheska, I. Singh, S. Khapli, M. Khobdabayev, J. Kim, S. Bhattacharjee, Y. Song, K. Chakrabarty and R. Karri, Lab Chip, 2023, 23, 4213 DOI: 10.1039/D3LC00335C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements