Issue 12, 2023

Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing

Abstract

Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used comprehensively in reactions until the complex interactions of NTP and liquids are better understood. To achieve this, NTP reactors that can overcome challenges with solvent evaporation, enable inline data collection, and achieve high selectivity, high yield, and high throughput are required. Here, we detail the construction of i) a microfluidic reactor for chemical reactions using NTP in organic solvents and ii) a corresponding batch setup for control studies and scale-up. The use of microfluidics enables controlled generation of NTP and subsequent mixing with reaction media without loss of solvent. The construction of a low-cost custom mount enables inline optical emission spectroscopy using a fibre optic probe at points along the fluidic pathway, which is used to probe species arising from NTP interacting with solvents. We demonstrate the decomposition of methylene blue in both reactors, developing an underpinning framework for applications in NTP chemical synthesis.

Graphical abstract: Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing

Supplementary files

Article information

Article type
Communication
Submitted
06 Jan 2023
Accepted
08 May 2023
First published
10 May 2023
This article is Open Access
Creative Commons BY license

Lab Chip, 2023,23, 2720-2728

Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing

P. Roszkowska, A. Dickenson, J. E. Higham, T. L. Easun, J. L. Walsh and A. G. Slater, Lab Chip, 2023, 23, 2720 DOI: 10.1039/D3LC00016H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements