Issue 34, 2023

Defective MOF-74 with ancillary open metal sites for the enhanced adsorption of chemical warfare agent simulants

Abstract

The development of effective porous adsorbents plays a vital role in eliminating hazardous substances from the environment. Toxic chemicals, including chemical warfare agents (CWAs), pose significant risks to both humans and ecosystems, highlighting the urgency to create efficient porous adsorbents. Therefore, substantial attention has been directed towards advancing adsorption techniques for the successful eradication of CWAs from the environment. Herein, we demonstrate a rational approach for enhancing the adsorption capability of a porous metal–organic framework (MOF) by employing ancillary open metal sites within the MOF structure. To generate defective MOF-74 (D-MOF-74) with ancillary open metal sites, some of the 2,5-dihydroxy-1,4-bezenedicarboxylic acid (DHBDC) linkers originally present in the MOF-74 structure were replaced with 1,4-benzenedicarboxylic acid (BDC) linkers. The absence of hydroxyl groups in the BDC linkers compared to the original DHBDC linkers creates ancillary open metal sites, which enhance the adsorption ability of D-MOF-74 for CWA simulants such as dimethyl methyl phosphonate, 2-chloroethyl ethyl sulfide, and methyl salicylate by providing effective interaction sites for the targeted molecules. However, excessive creation of open metal sites causes the collapse of the originally well-developed MOF-74 structure, resulting in a substantial reduction in its empty space and a subsequent decline in adsorption efficiency. Thus, to produce a defective MOF with the best performance, it is necessary to replace an appropriate amount of organic linker and create suitable open metal sites. Moreover, D-MOF-74 displays excellent recyclability during consecutive adsorption cycles without losing its original structure and morphology, suggesting that D-MOF-74 is an effective and stable material for the removal of CWA simulants.

Graphical abstract: Defective MOF-74 with ancillary open metal sites for the enhanced adsorption of chemical warfare agent simulants

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2023
Accepted
10 Aug 2023
First published
12 Aug 2023

Dalton Trans., 2023,52, 12143-12151

Defective MOF-74 with ancillary open metal sites for the enhanced adsorption of chemical warfare agent simulants

S. Lee, S. Oh, G. Lee and M. Oh, Dalton Trans., 2023, 52, 12143 DOI: 10.1039/D3DT02025H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements