Combined computational and experimental study about the incorporation of phosphorus into the structure of graphene oxide†
Abstract
Phosphorus-containing graphene-based hybrids are materials with outstanding properties for diverse applications. In this work, an easy route to produce phosphorus-graphene oxide hybrid materials is described, involving the use of variable amounts of H3PO4 and H2SO4 during the reaction of oxidation of a graphitic precursor. The physical and chemical features of the hybrids change significantly with the variation in the acid amounts used in the syntheses. XPS and solid-state 13C and 31P NMR results show that the hybrids contain large amounts of oxygen functional groups, with the phosphorus incorporation proceeding mostly through the formation of phosphate-like linkages and other functions with C–O–P bonds. The experimental findings are supported by DFT calculations, which allow the assessment of the energetics and the geometry of the interaction between phosphate groups and graphene-based models; these calculations are also used to predict the chemical shifts in the 31P and 13C NMR spectra of the models, which show good agreement with the experimentally observed solid-state NMR spectra.